Reference Pricing and Consumption Inequality

Janet Stefanov

Stanford University Macro Lunch

February 11th, 2025

Motivation

▶ In 2015, the EU proposed the Digital Single Market Strategy

- ▶ Stipulates that virtual borders across Europe be removed
- ▶ Further imposes that retailers charge identical prices to all EU customers
- ▶ Advocates of this policy cite increased competition and market access
- ▶ Distributional concerns of such policies have not been seriously considered
- ▶ Even without this policy, digital store borders are typically not enforced
 - ▶ Individuals are able to select their virtual location
 - ▶ Yet retailers choose to maintain different cross-country prices
 - ▶ Retailers are pushed to standardize prices across countries

Key Mechanism: Endogenous Market Choice

- \triangleright Price sensitive customers can change their digital market and access cheaper prices
- Cheaper international markets allow for price discrimination even within the same country
- \blacktriangleright Closest analogy is pharmaceuticals

+

+

+

+

+

Open

Open

Open

Open

Open

Open

Open

Open

Open

This Paper

- Documents new empirical patterns where firms use imperfect geo-blocking as a tool to price discriminate in wealthy markets
- ▶ Rationalizes the firms' decision to allow this arbitrage
- Motivated by the empirical patterns, develops a model that embeds the endogenous location choices of heterogeneous customers
- ▶ Estimates the model on the video game market

Literature Review

▶ Violations of Law of One Price

- ▶ Simonovska (2015), Crucini and Yilmazkuday (2014), Fajgelbaum et al (2011)
- Contribution: in digital settings, cheaper markets enable price discrimination

► Reference Pricing

- ▶ Dubois, Gandhi, and Vasserman (2022), Danzon and Chao (2000)
- ▶ Contribution: cheaper online markets can act as reference prices

► Allocative Effects of Exchange Rate Shocks

- ▶ Engel (2006), Drenik and Perez (2021), Cravino (2018), Gopinath et al (2011)
- ▶ Contribution: exchange rate shocks change *where* goods purchased

Empirical Application

The Video Game Market

- Steam is the largest PC video game retailer in the world, holding a 75% market share
 - ► "Amazon" of video games
- ▶ Video games are the largest global digital media market.
- ▶ Steam operates in many countries, including pricing in over 40 currencies

Figure: Map of Steam Users (2016)

Model Assumptions

► My model generates predictions when:

- ► Customers are heterogeneous Heterogeneity
- Exchange rate shocks occur Currency Volatility
- ▶ On the supply side, the model assumes:
 - ▶ No transport costs
 - Provision of identical products across markets
 - ► Extreme nominal price rigidity Rigidity
 - ► Goods cannot be resold across consumers

Model Assumptions

▶ My model generates predictions when:

- ► Customers are heterogeneous Heterogeneity
- Exchange rate shocks occur Currency Volatility
- \triangleright On the supply side, the model assumes:
 - ▶ No transport costs
 - Provision of identical products across markets
 - Extreme nominal price rigidity Rigidity
 - Goods cannot be resold across consumers
- ► The video game market is an *ideal setting* Market Size

Cross-Country Price Variation

	Baidars Gate
₩ 95.97% ↑638,743 ↓21,159	43,078 In-Game
► # # # ● \$ • # # # = = = = = = = = = = = = = = = =] # % # # 4 @ # # #
	¥ ۲۰۰۰ میں
Nov 123 Dec 123 Jon 124 Feb 124 Mor 124 Apr 124 — Final price	May 24 Jan 24 Jul 24 Aug 24 Sep 24 Oct 1 Iow Markers dats by Snaw Cillion (covered by high-charts.com) 57.

Currency ↓↑	Current Price	Converted Price $\downarrow\uparrow$
🎒 U.S. Dollar	\$59.99	\$59.99
슬 Uruguayan Peso	\$U1649	\$39.33 -34.44%
🍄 CIS - U.S. Dollar	\$39.99	\$39.99 -33.34%
💿 LATAM - U.S. Dollar	\$39.99	\$39.99 -33.34%
🙆 MENA - U.S. Dollar	\$39.99	\$39.99 -33.34%
🕓 South Asia - USD	\$39.99	\$39.99 -33.34%
💿 Indian Rupee	₹ 3399	\$40.64 -32.25%
🎒 Taiwan Dollar	NT\$ 1299	\$41.00 -31.64%
🍃 Philippine Peso	₽2299.00	\$41.12 -31.45%
🥚 Japanese Yen	¥ 5990	\$41.23 -31.26%
🔴 Ukrainian Hryvnia	16998	\$41.32 -31.12%
🌀 Kazakhstani Tenge	19900 T	\$41.60 -30.65%
😚 Hong Kong Dollar	HK\$ 329.00	\$42.29 -29.50%
🕑 Peruvian Sol	S/.159.00	\$42.44 -29.25%
Ohinese Yuan	¥ 298	\$42.49 -29.16%
🝺 Kuwaiti Dinar	13.00 KD	\$42.59 -29.00%
😑 Colombian Peso	COL\$ 179000	\$42.70 -28.81%
🛑 Indonesian Rupiah	Rp 649999	\$42.92 -28.45%
🜔 U.A.E. Dirham	159.00 AED	\$43.28 -27.84%
🕒 Mexican Peso	Mex\$ 849.99	\$43.30 -27.82%
≽ South African Rand	R 749.00	\$43.47 -27.53%
🙆 Vietnamese Dong	1090000 <u>đ</u>	\$44.31 -26.12%
📧 South Korean Won	₩ 59000	\$44.76 -25.39%
🥌 Singapore Dollar	S\$59.00	\$45.92 -23.45%
😑 Thai Baht	\$1499.00	\$46.24 -22.90%
실 Chilean Peso	CLP\$ 43000	\$47.46 -20.88%
🤕 Saudi Riyal	179.00 SR	\$47.72 -20.45%
🌗 Qatari Riyal	175.00 QR	\$48.07 -19.86%
🔮 Malaysian Ringgit	RM199.00	\$48.27 -19.53%
🧰 Costa Rican Colon	¢27900	\$53.21 -11.30%
Israeli New Shekel	₪199.00	\$53.91 -10.13%
🔮 Australian Dollar	A\$ 79.95	\$54.99 -8.32%
Canadian Dollar	CDN\$ 74 99	\$55.60 -7.32%

Data Sources

► Game price histories scraped from SteamDB in various currencies

- Currencies: USD, Euro, Turkish Lira, Argentinian Peso, Brazilian Real, Colombian Peso, Japanese Yen, Uruguayan Peso, Chilean Peso, British Pound, Israeli New Shekel, and the Chinese Yuan
- ▶ Characteristics: International release dates, developer, genre, AAA status

Data Sources

► Game price histories scraped from SteamDB in various currencies

- Currencies: USD, Euro, Turkish Lira, Argentinian Peso, Brazilian Real, Colombian Peso, Japanese Yen, Uruguayan Peso, Chilean Peso, British Pound, Israeli New Shekel, and the Chinese Yuan
- ▶ Characteristics: International release dates, developer, genre, AAA status
- ▶ Household Consumption Survey from Argentina
 - ▶ includes demographic information and expenditures
 - explicitly asks about video game purchases

Data Sources

► Game price histories scraped from SteamDB in various currencies

- Currencies: USD, Euro, Turkish Lira, Argentinian Peso, Brazilian Real, Colombian Peso, Japanese Yen, Uruguayan Peso, Chilean Peso, British Pound, Israeli New Shekel, and the Chinese Yuan
- ▶ Characteristics: International release dates, developer, genre, AAA status
- ▶ Household Consumption Survey from Argentina
 - ▶ includes demographic information and expenditures
 - explicitly asks about video game purchases
- ► Country-Level Quantities^{*} from Steam Spy and Google Trends
 - ▶ I observe country-level purchases of each game over time in the US
 - ▶ I observe aggregate purchases over multiple smaller markets (e.g. Argentina)
- ▶ Currency data from FRED

Model

Customer Location Choice

- Each period, customers observe a good's characteristics, a global menu of prices, and exchange rates (e_t)
- ▶ Customers choose a good-market pair
- ▶ Focus on two countries: home and foreign

Customer Location Choice

- Each period, customers observe a good's characteristics, a global menu of prices, and exchange rates (e_t)
- ▶ Customers choose a good-market pair
- ▶ Focus on two countries: home and foreign
- ► Customers vary along 3 attributes:
 - \blacktriangleright u_{ij} : utility of owning a product j
 - $\blacktriangleright \kappa_i$: percentage exchange rate cost
 - ▶ τ_i : lump-sum hassle cost to access non-home market prices Microfoundation

Customer Location Choice

- Each period, customers observe a good's characteristics, a global menu of prices, and exchange rates (e_t)
- ▶ Customers choose a good-market pair
- ▶ Focus on two countries: home and foreign
- ► Customers vary along 3 attributes:
 - \blacktriangleright u_{ij} : utility of owning a product j
 - $\blacktriangleright \kappa_i$: percentage exchange rate cost
 - ▶ τ_i : lump-sum hassle cost to access non-home market prices Microfoundation
- \blacktriangleright For good j, the home customer solves:

$$U_{ijt} = \max\{\underbrace{u_{ij} - \alpha}_{\text{Purchase at home}}, \underbrace{\underbrace{p_{hj}}_{\text{H price}}}_{\text{Purchase in foreign}}, \underbrace{u_{ij} - \alpha}_{\text{F price}}, \underbrace{\underbrace{\frac{p_{fj}}{e_t}}_{\text{F price}}, (1 + \kappa_i) - \tau_i\}}_{\text{Purchase in foreign}}$$

Incentive Constraints

- ▶ Suppose home is a larger, wealthier market
- ► Let η be the observed gap in prices $p_h = (1 + \eta)p_f$
- ► A separating equilibrium obtains when:

$$\alpha p_f\left(1+\eta-\frac{(1+\kappa_i)}{e_t}\right) \leq \tau_i$$

- ▶ This is a threshold rule on τ_i Comparative Statics
- ▶ The firm internalizes the customer's incentive constraints in determining their price veector
- **Customer heterogeneity** motivates the firm to price discriminate

Global Prices and Consumer Surplus

- Total revenue can be decomposed into contributions from four "types" Total Revenue
- ▶ The firm solves for a global price vector via a fixed point that trades off:
 - Market expansion effect from the price sensitive group: home customers attracted by the lower prices
 - Decreased revenue decrease from the savvy group: home customers that instead purchase in foreign
- ▶ Both savvy and price sensitive customers gain from unified markets
- ▶ The price sensitive group consumes *more* similarly to other home market customers
- Consumer surplus of foreign customers *decreases* relative to fully segmented markets

Exchange Rate Shocks

- ▶ Sticky prices \rightarrow exchange rates move relative prices
- Suppose there is a shock to exchange rates at time t, i.e. e_t rises:

$$\alpha p_f\left(1+\eta-\frac{(1+\kappa_i)}{e_t}\right) \leq \tau_i$$

Under an exchange rate shock, the incentive constraint is *harder* to satisfy Simulations

Dollarization and Steam's Policy Change

- ▶ The model predicts that the incentive constraints become more difficult to satisfy when there are exchange rate shocks
- ▶ When exchange rate shocks are more frequent than price changes, the firm anticipates possible exchange rate trends
- ▶ To reduce arbitrage, the firm can either:
 - 1. Reduce price gap η Model
 - 2. Price in the home currency (e.g. dollars)
- ▶ Under a stable exchange rate, (2) is never optimal **Proof**
 - ▶ Firm cedes currency exchange frictions that customers face

Dollarization and Steam's Policy Change

- ► The model predicts that the incentive constraints become more difficult to satisfy when there are exchange rate shocks
- ▶ When exchange rate shocks are more frequent than price changes, the firm anticipates possible exchange rate trends
- ▶ To reduce arbitrage, the firm can either:
 - 1. Reduce price gap η Model
 - 2. Price in the home currency (e.g. dollars)
- ▶ Under a stable exchange rate, (2) is never optimal **Proof**
 - ▶ Firm cedes currency exchange frictions that customers face
- October 25, 2023: Steam announces that all sales in Argentina and Turkey will be in US Dollars starting November 20, 2023
- ▶ The policy change reset cross-country price gaps and currency simultaneously

Parameterization

► I estimate α in both countries using logit (Estimate α)

- ► I estimate η from the empirical distribution of price gaps between the US and Argentina post-policy change Estimate η
- ► I estimate κ from the empirical distribution of price gaps between the US dollar and Argentinian peso prices in the month prior to the policy change Estimate κ
- I also estimate κ by comparing the price gaps between the US and Argentina at the time of the game's release with the price gaps following the dollarization policy change

Post Dollarization

- Since Argentina and Turkey dollarized their prices, they are no longer the cheapest locations
- I am currently scraping the "r/steamregionaltricks" subreddit
- Captures perceptions of the cheapest exchange rate-weighted market
- Currently, Ukraine is the cheapest such market

Conclusion

- ► I document a new empirical pattern that firms intentionally allow price-sensitive consumers to access lower developing-market prices
- ► I show that customers select their digital purchase "location" according to a cross-country menu of prices
- ▶ I develop a model to rationalize these new empirical findings
- ► In progress: counterfactuals
 - ► Fully segmented market benchmark
 - ► Digital Single Market benchmark

Appendix

EU's Digital Single Market

- The EU's Single Digital Market prohibits geoblocking to ensure equal access to digital goods.
- Cross-country price differences for video games remain substantial, despite regulatory efforts.
- Increased competition and access to consumer goods are key goals of the Single Digital Market.

Back

Key Mechanism: Endogenous Market Choice

- Price sensitive customers can change their digital market and access cheaper prices
- Cheaper international markets allow for price discrimination even within the same country Back

Ģ	Free delivery on qualifying orders.			
	View our Delivery & Returns Policy 🗇			
Product Details +				
Brand			+	
Size & Fit +				
Look After Me +				
About Me +				
IL.	122.2	✔ 450.00 ILS	Open	
ΗК	120.8	✔ HKD\$944.	99 Open	
SA	116.0	✔ 435.00 SA	R Open	
CN	111.9	✔¥805.00	Open	
AU	111.6	✔ \$170.00	Open	
UK	108.2	✔ £85.00	Open	
FR	91.9	🖌 81,29 CHF	Open	
SE	80.5	✔ 834,00 SE	K Open	
EE	66.3	✔£52.08	Open	
(All results converted to USD)				
	Rate	F.A.Q.	>SHOP<	

Movements of Relative Prices Example

• The firm chooses prices p_H and p_F to maximize total revenue:

$$M_{H} \sum_{t} \beta^{t} p_{H} \int_{i} \underbrace{\mathbb{1}\left\{ \alpha p_{F} \left[1 + \eta - \frac{(1 + \kappa_{i})}{e_{t}} \right] \leq \tau_{i} \right\}}_{\text{Arbitrage is not profitable}} \underbrace{\mathbb{1}\left\{ u_{i} \geq \alpha p_{H} \right\} d_{i}}_{\text{Buy at H price}}$$

Well-behaved home market customers

• The firm chooses prices p_H and p_F to maximize total revenue:

$$M_{H} \sum_{t} \beta^{t} p_{H} \int_{i} \underbrace{\mathbb{1}\left\{ \alpha p_{F} \left[1 + \eta - \frac{(1 + \kappa_{i})}{e_{t}} \right] \leq \tau_{i} \right\}}_{\text{Arbitrage is not profitable}} \underbrace{\mathbb{1}\left\{ u_{i} \geq \alpha p_{H} \right\} d_{i}}_{\text{Buy at H price}}$$

Well-behaved home market customers

$$+ M_H \sum_{t} \beta^t \frac{p_F}{e_t} \int_{i} \underbrace{1 \left\{ \alpha p_F \left[1 + \eta - \frac{(1 + \kappa_i)}{e_t} \right] \ge \tau_i \right\}}_{\text{Arbitrage is profitable}} \underbrace{1 \left\{ u_i \ge \alpha p_H \right\} d_i}_{\text{Buy at H price}}$$

me customers that would huv at home, but instead huv abroad - savay group

• The firm chooses prices p_H and p_F to maximize total revenue:

$$M_{H} \sum_{t} \beta^{t} p_{H} \int_{i} \underbrace{\mathbb{1}\left\{ \alpha p_{F} \left[1 + \eta - \frac{(1 + \kappa_{i})}{e_{t}} \right] \leq \tau_{i} \right\}}_{\text{Arbitrage is not profitable}} \underbrace{\mathbb{1}\left\{ u_{i} \geq \alpha p_{H} \right\} d_{i}}_{\text{Buy at H price}}$$

Well-behaved home market customers

$$+ M_H \sum_{t} \beta^t \frac{p_F}{e_t} \int_{i} \underbrace{1\left\{\alpha p_F \left[1 + \eta - \frac{(1 + \kappa_i)}{e_t}\right] \ge \tau_i\right\}}_{\text{Arbitrage is profitable}} \underbrace{1\left\{u_i \ge \alpha p_H\right\}d_i}_{\text{Buy at H price}}$$

Home customers that would buy at home, but instead buy abroad – savvy group

$$+ M_H \sum_t \beta^t \frac{p_F}{e_t} \int_i \underbrace{\mathbb{1}\left\{ \alpha p_F \left[1 + \eta - \frac{(1 + \kappa_i)}{e_t} \right] \ge \tau_i \right\}}_{\text{Arbitrage is profitable}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \ge \alpha p_F (\frac{(1 + \kappa_i)}{e_t} + \tau_i) \right\} d_H}_{\text{Buy at F price, not at H price}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \ge \alpha p_F (\frac{(1 + \kappa_i)}{e_t} + \tau_i) \right\} d_H}_{\text{Buy at F price, not at H price}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \ge \alpha p_F (\frac{(1 + \kappa_i)}{e_t} + \tau_i) \right\} d_H}_{\text{Buy at F price, not at H price}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \ge \alpha p_F (\frac{(1 + \kappa_i)}{e_t} + \tau_i) \right\} d_H}_{\text{Buy at F price}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \ge \alpha p_F (\frac{(1 + \kappa_i)}{e_t} + \tau_i) \right\} d_H}_{\text{Buy at F price}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \ge \alpha p_F (\frac{(1 + \kappa_i)}{e_t} + \tau_i) \right\} d_H}_{\text{Buy at F price}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \ge \alpha p_F (\frac{(1 + \kappa_i)}{e_t} + \tau_i) \right\} d_H}_{\text{Buy at F price}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \ge \alpha p_F (\frac{(1 + \kappa_i)}{e_t} + \tau_i) \right\} d_H}_{\text{Buy at F price}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \ge \alpha p_F (\frac{(1 + \kappa_i)}{e_t} + \tau_i) \right\} d_H}_{\text{Buy at F price}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \ge \alpha p_F (\frac{(1 + \kappa_i)}{e_t} + \tau_i) \right\} d_H}_{\text{Buy at F price}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \le \alpha p_F (\frac{(1 + \kappa_i)}{e_t} + \tau_i) \right\} d_H}_{\text{Buy at F price}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \le \alpha p_F (\frac{(1 + \kappa_i)}{e_t} + \tau_i) \right\} d_H}_{\text{Buy at F price}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \le \alpha p_F (\frac{(1 + \kappa_i)}{e_t} + \tau_i) \right\} d_H}_{\text{Buy at F price}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \le \alpha p_F (\frac{(1 + \kappa_i)}{e_t} + \tau_i) \right\} d_H}_{\text{Buy at F price}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \le \alpha p_F (\frac{(1 + \kappa_i)}{e_t} + \tau_i) \right\} d_H}_{\text{Buy at F price}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \le \alpha p_F (\frac{(1 + \kappa_i)}{e_t} + \tau_i) \right\} d_H}_{\text{Buy at F price}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \le \alpha p_F (\frac{(1 + \kappa_i)}{e_t} + \tau_i) \right\} d_H}_{\text{Buy at F price}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \le \alpha p_F (\frac{(1 + \kappa_i)}{e_t} + \tau_i) \right\} d_H}_{\text{Buy at F price}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \le \alpha p_F (\frac{(1 + \kappa_i)}{e_t} + \tau_i) \right\} d_H}_{\text{Buy at F price}} \underbrace{\mathbb{1}\left\{ \alpha p_H = \tau_i + \tau_i$$

Home customers that won't buy at home, but will buy at foreign prices – price sensitive group

• The firm chooses prices p_H and p_F to maximize total revenue:

$$M_{H} \sum_{t} \beta^{t} p_{H} \int_{i} \underbrace{\mathbb{1}\left\{ \alpha p_{F} \left[1 + \eta - \frac{(1 + \kappa_{i})}{e_{t}} \right] \leq \tau_{i} \right\}}_{\text{Arbitrage is not profitable}} \underbrace{\mathbb{1}\left\{ u_{i} \geq \alpha p_{H} \right\} d_{i}}_{\text{Buy at H price}}$$

Well-behaved home market customers

$$+ M_H \sum_{t} \beta^t \frac{p_F}{e_t} \int_{i} \underbrace{1 \left\{ \alpha p_F \left[1 + \eta - \frac{(1 + \kappa_i)}{e_t} \right] \ge \tau_i \right\}}_{\text{Arbitrage is profitable}} \underbrace{1 \left\{ u_i \ge \alpha p_H \right\} d_i}_{\text{Buy at H price}}$$

Home customers that would buy at home, but instead buy abroad – savvy group

$$+ M_H \sum_t \beta^t \frac{p_F}{e_t} \int_i \underbrace{\mathbb{1}\left\{ \alpha p_F \left[1 + \eta - \frac{(1 + \kappa_i)}{e_t} \right] \ge \tau_i \right\}}_{\text{Arbitrage is prefitable}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \ge \alpha p_F (\frac{(1 + \kappa_i)}{e_t} + \tau_i) \right\}}_{\text{Rew at Formics, part at Horizon}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \ge \alpha p_F (\frac{1 + \kappa_i}{e_t} + \tau_i) \right\}}_{\text{Rew at Formics, part at Horizon}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \ge \alpha p_F (\frac{1 + \kappa_i}{e_t} + \tau_i) \right\}}_{\text{Rew at Formics, part at Horizon}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \ge \alpha p_F (\frac{1 + \kappa_i}{e_t} + \tau_i) \right\}}_{\text{Rew at Formics, part at Horizon}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \ge \alpha p_F (\frac{1 + \kappa_i}{e_t} + \tau_i) \right\}}_{\text{Rew at Formics, part at Horizon}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \ge \alpha p_F (\frac{1 + \kappa_i}{e_t} + \tau_i) \right\}}_{\text{Rew at Formics, part at Horizon}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \ge \alpha p_F (\frac{1 + \kappa_i}{e_t} + \tau_i) \right\}}_{\text{Rew at Formics, part at Horizon}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \ge \alpha p_F (\frac{1 + \kappa_i}{e_t} + \tau_i) \right\}}_{\text{Rew at Formics, part at Horizon}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \ge \alpha p_F (\frac{1 + \kappa_i}{e_t} + \tau_i) \right\}}_{\text{Rew at Formics, part at Horizon}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \le \alpha p_F (\frac{1 + \kappa_i}{e_t} + \tau_i) \right\}}_{\text{Rew at Formics, part at Horizon}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \le \alpha p_F (\frac{1 + \kappa_i}{e_t} + \tau_i) \right\}}_{\text{Rew at Formics, part at Horizon}} \underbrace{\mathbb{1}\left\{ \alpha p_H \ge u_i \le \alpha p_F (\frac{1 + \kappa_i}{e_t} + \tau_i) \right\}}_{\text{Rew at Formics, part at Horizon}} \underbrace{\mathbb{1}\left\{ \alpha p_H = u_i \le \alpha p_F (\frac{1 + \kappa_i}{e_t} + \tau_i) \right\}}_{\text{Rew at Formics, part at Horizon}} \underbrace{\mathbb{1}\left\{ \alpha p_H = u_i \le \alpha p_F (\frac{1 + \kappa_i}{e_t} + \tau_i) \right\}}_{\text{Rew at Formics, part at Horizon}} \underbrace{\mathbb{1}\left\{ \alpha p_H = u_i \le \alpha p_F (\frac{1 + \kappa_i}{e_t} + \tau_i) \right\}}_{\text{Rew at Formics, part at Horizon}} \underbrace{\mathbb{1}\left\{ \alpha p_H = u_i \le \alpha p_F (\frac{1 + \kappa_i}{e_t} + \tau_i) \right\}}_{\text{Rew at Formics, part at Horizon}} \underbrace{\mathbb{1}\left\{ \alpha p_H = u_i \le \alpha p_F (\frac{1 + \kappa_i}{e_t} + \tau_i) \right\}}_{\text{Rew at Formics, part at Horizon}} \underbrace{\mathbb{1}\left\{ \alpha p_H = u_i \le \alpha p_F (\frac{1 + \kappa_i}{e_t} + \tau_i) \right\}}_{\text{Rew at Formics, part at Horizon}} \underbrace{\mathbb{1}\left\{ \alpha p_H = u_i \le \alpha p_F (\frac{1 + \kappa_i}{e_t} + \tau_i) \right\}}_{\text{Rew at Formics, part at Horizon}} \underbrace{\mathbb{1}\left\{ \alpha p_H = u_i \le \alpha p_F (\frac{1 + \kappa_i}{e_t} + \tau_i) \right\}}_{\text{Rew at Formics, part at Horizon}} \underbrace{\mathbb{1}\left\{ \alpha p_H = u_i \le \alpha p_F (\frac{1 + \kappa_i}{e_t}$$

ome customers that won't huv at home, but will huv at foreign prices - price sensitive

$$+ M_F \sum_{t} \beta^{\dagger} \frac{p_F}{e_t} \underbrace{\int_{i} \mathbb{I} \left\{ u_i \ge \alpha p_F \right\}}_{=}$$

Buy at F price

Microfounding τ_i

- $\blacktriangleright \tau_i$ is the hassle cost of accessing a foreign market's prices
- ▶ τ_i is a linear combination of the true hassle cost to change the store location and the possibility of getting purchases revoked
- ▶ In empirical application, some share of accounts get flagged as purchasing in the incorrect region
- ► These account holders have to produce a credit card that corresponds to the region of purchase to "verify" their eligibility
- The punishment for getting flagged is losing access to library for some period of time
- ▶ This is costlier for users with a larger library, which suggests the policy may be well targeted

Simulation Results

- ► I simulate time to first arbitrage opportunity for the full matrix of κ - τ pairs within the reasonable range of parameters
- \blacktriangleright κ does not matter <u>much relative to the fixed hassle cost τ (Back)</u>

Figure: May change this

Demand-Side Assumption: Volatility

- Currency volatility exacerbates the tradeoff between arbitrage and price discrimination
- ► Consider Argentina Back

Demand-Side Assumption: Heterogeneity

- Customer heterogeneity creates price discrimination motives
- ► US customers are heterogeneous
- Argentinian customers also exhibit high heterogeneity Back

Demand Estimation Results: Argentina

Table: Estimation Results

	Coefficient	Confidence Interval
$\mathbf{constant}$	-3.597***	
	(0.258)	[-4.102, -3.092]
AAA	1.316^{***}	
	(0.261)	[0.804, 1.828]
price	-0.600***	
	(0.092)	[-0.781, -0.420]

Table: *

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors in parentheses. Developer-level fixed effects are included.

Demand Estimation Results: US

Table: Estimation Results

	$\mathbf{Coefficient}$	Confidence Interval
$\operatorname{constant}$	-3.191***	
	(0.188)	[-3.561, -2.821]
AAA	.636***	
	(0.114)	[0.412, 0.860]
price	-0.051^{***}	
	(0.009)	[-0.070, -0.033]

Table: *

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors in parentheses. Developer-level fixed effects are included.

Incentive Constraints: Implications

$$\alpha p_f\left(1+\eta-rac{(1+\kappa_i)}{e_t}
ight) \leq au_i$$

 \blacktriangleright u_{ij} drops out because goods are *identical* across markets

- Reducing η slackens the incentive constraint
- Given draws of κ_i , τ_i , the firm can set prices to satisfy the incentive constraint
 - ▶ Customer heterogeneity motivates the firm to price discriminate Back

Home vs Foreign Pricing

▶ Under a stable exchange rate, if the firm prices in home's currency, the IC is:

$$p_h \le p_f + \frac{\tau_i}{\alpha}$$
$$(1+\eta)p_f \le p_f + \frac{\tau_i}{\alpha}$$

$$\alpha p_f \eta \le \tau_i \tag{1}$$

▶ Under a stable exchange rate, if the firm prices in foreign's currency, the IC is:

$$p_h \le p_f(1+\kappa_i) + \frac{\tau_i}{\alpha}$$
$$\alpha p_f(1+\eta - (1+\kappa_i)) \le \tau$$

$$\alpha p_f(\eta - \kappa_i) \le \tau_i \tag{2}$$

For κ_i positive, (2) is a smaller area than (1)

Argentina's Video Game Market

Figure: Argentinians spend more on video games than on soccer Back

Nominal Price Rigidity

▶ Nominal prices for AAA games do not move much over time Back

Demand Estimation: Argentina

- Discrete choice in each period between buying a game or selecting the outside option
- ▶ Think of each choice as a game-market pair
- ▶ Estimate a logit demand model with indirect utility:

 $u_{idjt} = \alpha lnp_{jt} + \beta AAA_j + \phi_d + \mu_t + \xi_{jt}$

- ▶ I estimate separately for Argentina and for the US
- \blacktriangleright Coefficient on price is -.600 (se: 0.092)
- \blacktriangleright Coefficient on AAA is 1.316 (se: 0.261)
- ► Full demand estimation results (AR Demand Estimation) (Back

Recovering η

- ► As part of the policy change, developers were given a suggested USD price: 50% of the US price
- Even if they selected the default, the developers still had to make an active markdown choice Back

Recovering κ

- Some games posted prices both in US dollars and Argentinian pesos in the month prior to the policy change
- ▶ The hassle cost to access either of these Argentinian prices is identical
- ▶ Remaining price gaps come from κ in my model
- ▶ I use the last observed US price prior to the policy change Back

Price Differences in Argentina