

Reference Pricing and Consumption Inequality

Janet Stefanov

Stanford University Macro Day

October 10, 2025

Motivation

- ▶ In the status quo, firms **sustain** large cross-country price gaps
 - ▶ Household heterogeneity shapes markups across products of varying qualities
 - ▶ I argue that across space, household heterogeneity can generate heterogeneous markups for **identical** products
 - ▶ Price gaps reveal differences in **demand composition** across markets

Motivation

- ▶ In the status quo, firms **sustain large cross-country price gaps**
 - ▶ Household heterogeneity shapes markups across products of varying qualities
 - ▶ I argue that across space, household heterogeneity can generate heterogeneous markups for **identical products**
 - ▶ Price gaps reveal differences in **demand composition** across markets
- ▶ In 2015, the EU proposed the Digital Single Market Strategy
 - ▶ Removes virtual borders across Europe
 - ▶ Requires retailers to **charge identical prices** to all EU customers
- ▶ Raises a natural question of welfare effects of such policies across space
 - ▶ I identify the **winners and losers** of the policy if it were implemented globally

This Paper

- ▶ I document a middle ground between law of one price and full pricing-to-market in digital goods
 - ▶ Show **imperfect geo-blocking** enables price discrimination in wealthy markets
- ▶ Develop a model that embeds the **endogenous location choices** of heterogeneous customers with imperfect enforcement by the firm
 - ▶ Some customers engage in “risky arbitrage”
 - ▶ Prices increase in poorer countries
 - ▶ The policy would **reallocates surplus** from low income countries to high income countries
- ▶ Estimate the model on the video game market
 - ▶ Allows me to abstract away from differences in costs or quality
 - ▶ Under reasonable parameters, the imperfect enforcement is optimal for the firm
 - ▶ Eventually: compare prices, profits, and consumer surplus under different pricing regimes

Additional Examples

Literature Review

- ▶ Violations of Law of One Price
 - ▶ Simonovska (2015), Crucini and Yilmazkuday (2014), Fajgelbaum et al (2011)
 - ▶ **Contribution:** in digital settings, cheaper markets enable price discrimination
- ▶ Uniform pricing and household sorting
 - ▶ DellaVigna Gentzkow (2019), Bils Klenow (2001), Jaimovich, Rebelo, Wong, and Zhang (2019)
 - ▶ **Contribution:** firms use low prices in smaller markets to segment households within the same country
- ▶ Reference Pricing
 - ▶ Dubois, Gandhi, and Vasserman (2022), Danzon and Chao (2000), Jensen (2007)
 - ▶ **Contribution:** cheaper online markets can act as reference prices
- ▶ Allocative Effects of Exchange Rate Shocks
 - ▶ Engel (2006), Drenik and Perez (2021), Cravino (2018), Gopinath et al (2011)
 - ▶ **Contribution:** exchange rate shocks change *where* goods are purchased

Empirical Application

Why Video Games?

- ▶ Focusing on video games allows me to rule out several traditional explanations of price variation across space:
 - ▶ No transport costs
 - ▶ Shuts down transport costs as a source of marginal cost heterogeneity
 - ▶ Products are identical across markets
 - ▶ Rules out quality differences across space
 - ▶ Goods cannot be resold across markets
 - ▶ Rules out arbitrage across customers in different locations

Why Video Games?

- ▶ Focusing on video games allows me to rule out several traditional explanations of price variation across space:
 - ▶ No transport costs
 - ▶ Shuts down transport costs as a source of marginal cost heterogeneity
 - ▶ Products are identical across markets
 - ▶ Rules out quality differences across space
 - ▶ Goods cannot be resold across markets
 - ▶ Rules out arbitrage across customers in different locations
- ▶ The video game market is an *ideal setting* Market Size

The Video Game Market

- ▶ Video games are the **largest global digital media market**
- ▶ Steam is the largest PC video game retailer in the world, holding a **75% market share**
 - ▶ “Amazon” of video games
- ▶ Steam operates in many countries, including pricing in over 40 currencies

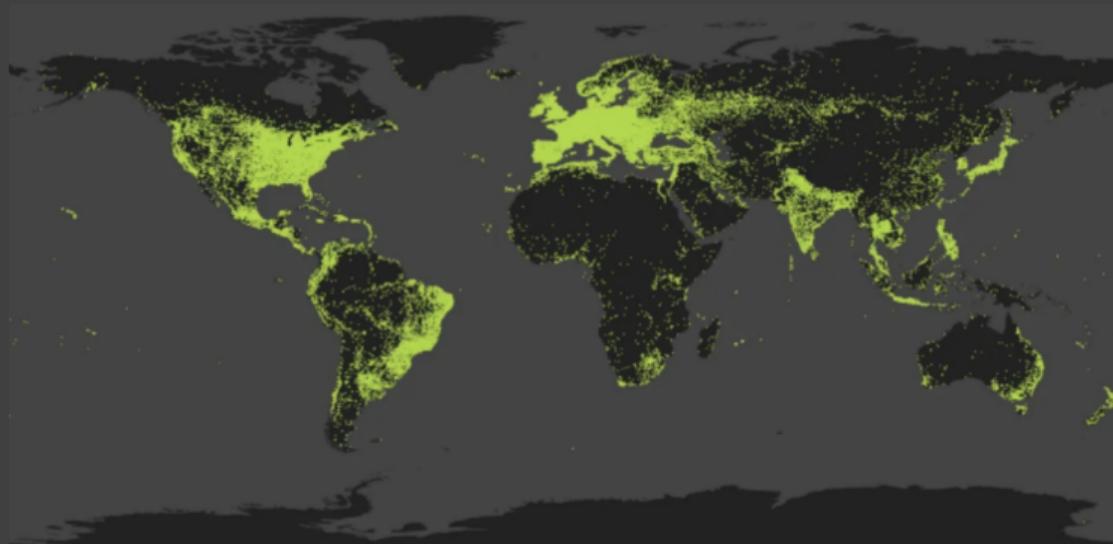
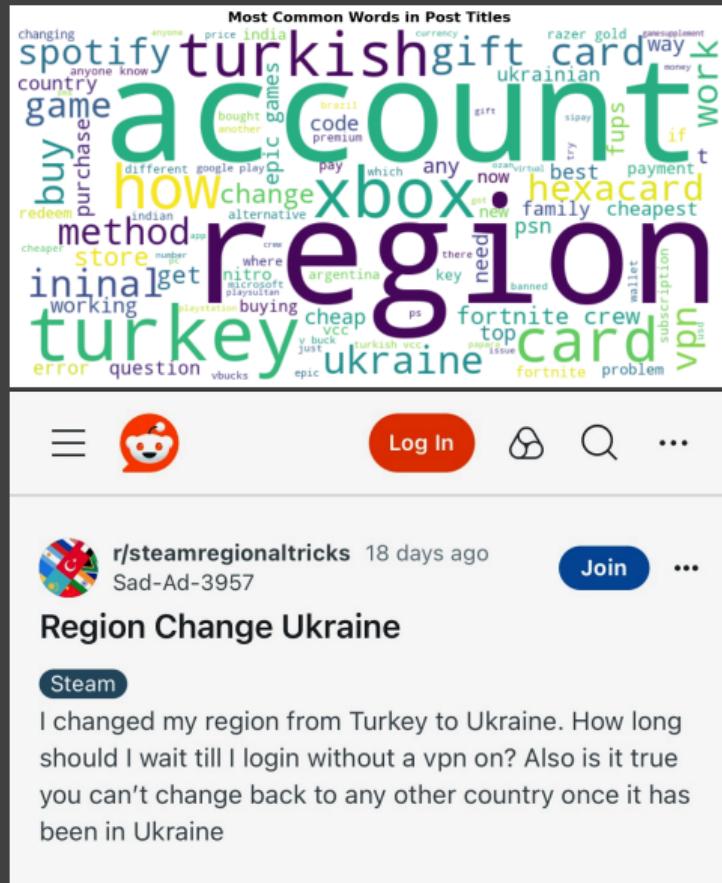


Figure: Map of Steam Users (2016)


Cross-Country Price Variation

CURRENCY	CURRENT PRICE	CONVERTED PRICE	
U.S. Dollar	\$59.99	\$59.99	
British Pound	£49.99	\$62.94	+4.92%
Euro	59,99€	\$64.22	+7.06%
Russian Ruble	1999 ₽	\$32.37	-46.04%
Brazilian Real	R\$ 199,99	\$41.05	-31.56%
Japanese Yen	¥ 6990	\$52.70	-12.15%
Indonesian Rupiah	Rp 699999	\$48.39	-19.33%
Malaysian Ringgit	RM219.00	\$49.82	-16.95%
Philippine Peso	₱2599.00	\$49.20	-17.99%
Singapore Dollar	S\$69.00	\$50.22	-16.28%
Thai Baht	฿1799.00	\$52.31	-12.80%
Vietnamese Dong	990000đ	\$42.68	-28.84%
South Korean Won	₩ 68000	\$52.59	-12.33%
Turkish Lira	₺249,00	\$14.78	-75.35%
Ukrainian Hryvnia	8998	\$30.42	-49.29%
Mexican Peso	Mex\$ 1299.00	\$66.33	+10.58%
Canadian Dollar	CDN\$ 79.99	\$63.82	+6.40%
Australian Dollar	A\$ 89.95	\$65.04	+8.43%
New Zealand Dollar	NZ\$ 99.99	\$64.89	+8.18%
Norwegian Krone	549.00 kr	\$58.00	-3.31%
Polish Złoty	199,00 zł	\$46.54	-22.42%
Swiss Franc	CHF 69.99	\$71.97	+19.98%
Chinese Yuan	¥ 298	\$44.67	-25.53%
Indian Rupee	₹ 2999	\$38.61	-35.64%
Chilean Peso	CLP\$ 39999	\$48.42	-19.28%
Peruvian Sol	S/199.00	\$53.20	-11.32%
Colombian Peso	COL\$ 199000	\$52.62	-12.28%
South African Rand	R 799.00	\$51.91	-13.46%
Hong Kong Dollar	HK\$ 399.00	\$50.85	-15.23%
Taiwan Dollar	NT\$ 1599	\$54.31	-9.46%
Saudi Riyal	229.00 SR	\$61.04	+1.75%
U.A.E. Dirham	229.00 AED	\$62.34	+3.93%
Argentine Peso	ARS\$ 2199,00	\$18.13	-69.77%
Israeli New Shekel	₪269.00	\$80.43	+34.08%
Kazakhstani Tenge	11499T	\$26.64	-55.58%

Text Data

- ▶ Steam regional tricks subreddit
- ▶ Users discuss the best ways to exploit cross-country price variation on Steam
- ▶ Share payment methods, VPNs, etc
- ▶ Discuss consequences if detected by the firm

Data Sources

- Daily Game price histories scraped from SteamDB in various currencies
 - Currencies: USD, Euro, Turkish Lira, Argentinian Peso, Brazilian Real, Colombian Peso, Japanese Yen, Uruguayan Peso, Chilean Peso, British Pound, Israeli New Shekel, and the Chinese Yuan
 - Characteristics: International release dates, developer, genre, AAA status

Data Sources

- ▶ Daily Game price histories scraped from SteamDB in various currencies
 - ▶ Currencies: USD, Euro, Turkish Lira, Argentinian Peso, Brazilian Real, Colombian Peso, Japanese Yen, Uruguayan Peso, Chilean Peso, British Pound, Israeli New Shekel, and the Chinese Yuan
 - ▶ Characteristics: International release dates, developer, genre, AAA status
- ▶ Daily Country-Level Quantities scraped from Steam Spy
 - ▶ I observe daily, country-level purchases of each game for large markets
 - ▶ I observe aggregate purchases over multiple smaller markets (e.g. Argentina)

Data Sources

- ▶ Daily Game price histories scraped from SteamDB in various currencies
 - ▶ Currencies: USD, Euro, Turkish Lira, Argentinian Peso, Brazilian Real, Colombian Peso, Japanese Yen, Uruguayan Peso, Chilean Peso, British Pound, Israeli New Shekel, and the Chinese Yuan
 - ▶ Characteristics: International release dates, developer, genre, AAA status
- ▶ Daily Country-Level Quantities scraped from Steam Spy
 - ▶ I observe daily, country-level purchases of each game for large markets
 - ▶ I observe aggregate purchases over multiple smaller markets (e.g. Argentina)
- ▶ Text data scraped from Steam regional tricks subreddit
 - ▶ Co-movement between exchange rates and frequency of discussion of punishment penalties informs the firm's punishment strategy π Correlations with Ex Rate

Data Sources

- ▶ Daily Game price histories scraped from SteamDB in various currencies
 - ▶ Currencies: USD, Euro, Turkish Lira, Argentinian Peso, Brazilian Real, Colombian Peso, Japanese Yen, Uruguayan Peso, Chilean Peso, British Pound, Israeli New Shekel, and the Chinese Yuan
 - ▶ Characteristics: International release dates, developer, genre, AAA status
- ▶ Daily Country-Level Quantities scraped from Steam Spy
 - ▶ I observe daily, country-level purchases of each game for large markets
 - ▶ I observe aggregate purchases over multiple smaller markets (e.g. Argentina)
- ▶ Text data scraped from Steam regional tricks subreddit
 - ▶ Co-movement between exchange rates and frequency of discussion of punishment penalties informs the firm's punishment strategy π Correlations with Ex Rate
- ▶ Household Consumption Survey from Argentina
 - ▶ includes demographic information and expenditures
 - ▶ explicitly asks about video game purchases
- ▶ Currency data from FRED

Model

Home Customer Location Choice

- ▶ Customers choose a purchase location
- ▶ Focus on two countries: home and foreign
 - ▶ Foreign market customers *always* choose to purchase in foreign
 - ▶ Exposition of the household block focuses on home customers
- ▶ Each period, customers observe a **global menu of prices**, firm's strategy π , and exchange rates (E_t)

Home Customer Location Choice

- ▶ Customers choose a purchase location
- ▶ Focus on two countries: home and foreign
 - ▶ Foreign market customers *always* choose to purchase in foreign
 - ▶ Exposition of the household block focuses on home customers
- ▶ Each period, customers observe a **global menu of prices**, firm's strategy π , and exchange rates (E_t)
- ▶ Customers of type (θ, L) vary along 4 exogenous attributes, θ , and 1 state, L :
 - ▶ c_i : physical location (home or foreign)
 - ▶ y_i : income
 - ▶ α_i : preferences over video games
 - ▶ τ_i : lump-sum hassle cost to access foreign market prices
 - ▶ $L_{i,t}$: library size that tracks the number of previously purchased goods

“Risky” Arbitrage

- Customers earn per-period utility based on their purchase choice:

$$r(L, a; \theta) = u(c_a) + \alpha_i L$$

$$c_0 = y_i$$

$$c_H = y_i - p_H$$

$$c_F = y_i - (E_t p_F + \tau_i)$$

- Purchases at home (H) or in foreign (F) add to the customer's library size

“Risky” Arbitrage

- Customers earn per-period utility based on their purchase choice:

$$r(L, a; \theta) = u(c_a) + \alpha_i L$$

$$c_0 = y_i$$

$$c_H = y_i - p_H$$

$$c_F = y_i - (E_t p_F + \tau_i)$$

- Purchases at home (H) or in foreign (F) add to the customer's library size
- Firms punish customers for purchasing in foreign with probability π by revoking access to the users' library based on Steam's terms and conditions
- The library law of motion is given by:

$$L'(L, a) = \begin{cases} L, & \text{if } a = 0 \\ L + 1, & \text{if } a = H \\ L + 1, & \text{if } a = F \text{ with probability } 1 - \pi \\ 0, & \text{if } a = F \text{ with probability } \pi \end{cases}$$

Customer Location Choice

- A type θ customer with existing library of size L chooses a location from which to purchase a good to solve:

$$V_\theta(L) = \max_a \{u(c_a) + \alpha L + \beta \mathbb{E} [V_\theta(L'; L, a)]\}$$

- $\text{pol}_\theta(L)$ is the purchase location policy by a customer of type θ

Customer Location Choice

- A type θ customer with existing library of size L chooses a location from which to purchase a good to solve:

$$V_\theta(L) = \max_a \{u(c_a) + \alpha L + \beta \mathbb{E} [V_\theta(L'; L, a)]\}$$

- $\text{pol}_\theta(L)$ is the purchase location policy by a customer of type θ
- As the library size L grows, the shadow cost of purchasing in foreign rises
 - Life cycle pattern of initially buying in foreign and eventually switching to home
 - Customers exit the market with hazard rate s and new entrants are drawn from distribution ν Hazard Rate Estimation
 - Changes to exchange rates break this monotonicity in library size by changing relative prices

Demand

- Demand in the home location is given by integrating over all of the consumer types θ and library sizes L for those purchasing at home

$$D_H(p_H, p_F, \pi, G) = \int_L \int_{\theta} \mathbb{1}\{\text{pol}_{\theta}(L) = H\} dG(\theta, L)$$

- Demand in the foreign location is given by:

$$D_F(p_H, p_F, \pi, G) = \int_L \int_{\theta} \mathbb{1}\{\text{pol}_{\theta}(L) = F\} dG(\theta, L)$$

- Includes foreign customers and arbitrageurs

Firm Problem

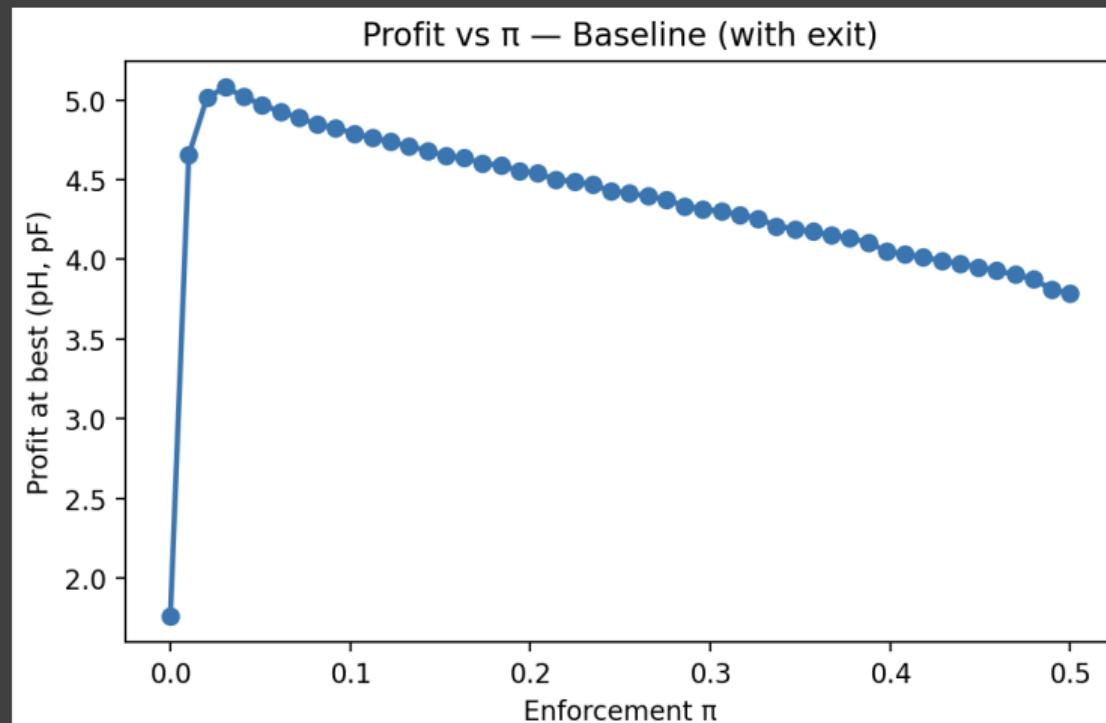
- ▶ Firm selects (p_H, p_F, π) to maximize profits subject to a convex punishment strategy cost for implementing π
- ▶ The firm solves:

$$\max \quad p_H D_H + p_F D_F - C(\pi; k_1, k_2)$$

- ▶ where $C(\pi; k_1, k_2)$ is a convex punishment strategy cost:

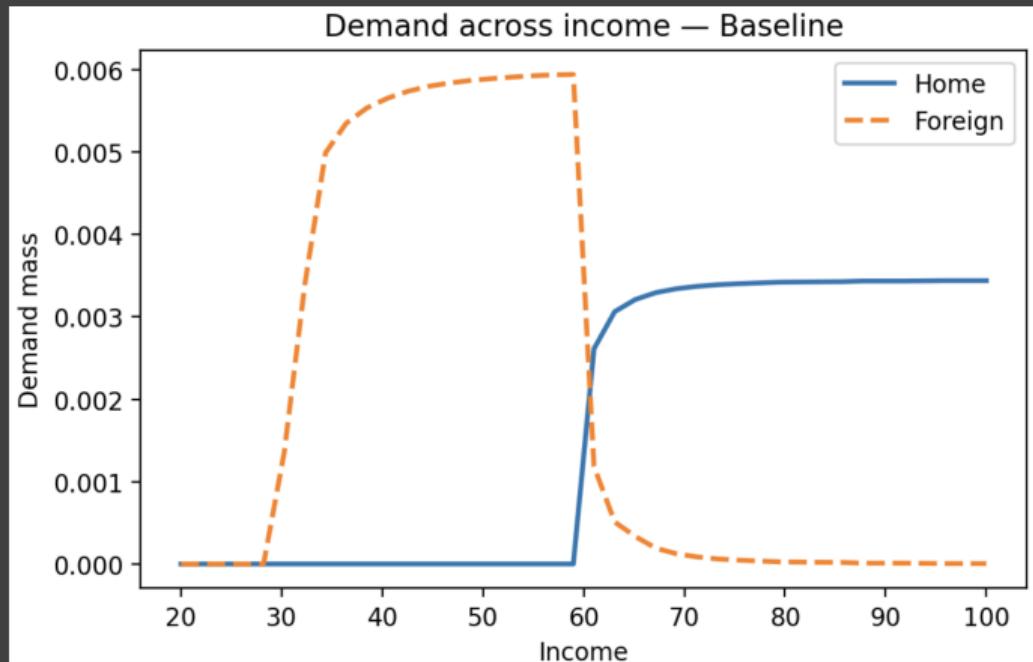
$$C(\pi; k_1, k_2) = k_1 \pi + k_2 \pi^2$$

- ▶ taking as given induced customer demand Timing


Global Prices and Consumer Surplus

- The firm solves for a global price vector and punishment strategy via a fixed point that trades off: **Equilibrium Concept**
 - Market expansion effect **from the price sensitive group**: home customers attracted by the lower prices
 - Decreased revenue **from the savvy group**: home customers that instead purchase in foreign
 - Decreased revenue from customers located in the foreign market
- Both **savvy** and **price sensitive** customers gain from imperfect enforcement
- Consumer surplus of foreign customers *decreases* relative to fully segmented markets

Estimation


Model Simulations

- At each level of punishment probability π , find the highest profit by varying p_F and p_H Calibrated Parameters
- At the optimal π , the recovered prices are 59.58 for home and 15.00 for foreign

Demand Across Income Levels

- ▶ For prices of 59.58 and 15.00, π^* of .03 efficiently sorts home households
- ▶ Lower income households largely purchase in the foreign market:
 - ▶ Higher marginal utility of non-video game consumption
 - ▶ Smaller accumulated library sizes

Estimation Strategy: Simulated Method of Moments

- ▶ I assume that observed prices (p_H, p_F) are profit maximizing given consumer heterogeneity, exchange-rate risk, and library dynamics

Estimation Strategy: Simulated Method of Moments

- ▶ I assume that observed prices (p_H, p_F) are profit maximizing given consumer heterogeneity, exchange-rate risk, and library dynamics
- ▶ Outer loop: choose candidate parameter vector θ , firm cost vector k_1, k_2
- ▶ Inner loop: solve the firm–consumer environment given θ, k_1, k_2 :
 - ▶ Consumer side: solve value functions and policies; aggregate to demand $D_H(\theta), D_F(\theta)$
 - ▶ Firm side: given induced demand, solve for optimal $(p_H(\theta), p_F(\theta), \pi(\theta))$

Estimation Strategy: Simulated Method of Moments

- ▶ I assume that observed prices (p_H, p_F) are profit maximizing given consumer heterogeneity, exchange-rate risk, and library dynamics
- ▶ Outer loop: choose candidate parameter vector θ , firm cost vector k_1, k_2
- ▶ Inner loop: solve the firm–consumer environment given θ, k_1, k_2 :
 - ▶ Consumer side: solve value functions and policies; aggregate to demand $D_H(\theta), D_F(\theta)$
 - ▶ Firm side: given induced demand, solve for optimal $(p_H(\theta), p_F(\theta), \pi(\theta))$
- ▶ Simulate model moments $m^{\text{model}}(\theta)$ to match data moments m^{data}
- ▶ Minimize $Q(\theta) = [m^{\text{data}} - m^{\text{model}}(\theta)]^\top W [m^{\text{data}} - m^{\text{model}}(\theta)]$ Moments

From Model to Data Moments

- ▶ Market shares: pin down income and switching cost distributions by capturing substitution patterns
 - ▶ Baseline home vs. foreign shares
 - ▶ Response to exchange rate shocks
 - ▶ Lags in switching
- ▶ Text data moments (Reddit)
 - ▶ Reflect the product of enforcement intensity π and switching volume
 - ▶ Frequency of punishment discussions
 - ▶ Correlation with large shocks
 - ▶ Baseline frequency / false positives
- ▶ Market shares identify the volume of switches, while Reddit data identifies how often switches trigger punishment

Counterfactuals

- ▶ Compare the prices and profits under imperfectly enforced digital boundaries to two benchmarks
 - ▶ Digital Single Market regime where law of one price must hold
 - ▶ Segmented Market regime where firms can price to each market individually
- ▶ Preliminary simulation results yield regime-dependent prices:
 - ▶ Imperfect enforcement: $p_H = 59.58$, $p_F = 15.00$
 - ▶ Uniform prices: $p = 47.917$
 - ▶ Segmented markets: $p_H = 53.75$, $p_F = 11.25$
 - ▶ Unified markets raise prices by > 300% in poor countries and lower prices by 20% in rich countries
- ▶ Zero hassle cost for customers Zero hassle cost
- ▶ Zero enforcement cost for the firm Zero Enforcement Cost

Conclusion

- ▶ I document a new empirical pattern that firms allow price-sensitive consumers to access lower foreign market prices
- ▶ I develop and estimate a model to rationalize these new empirical findings
- ▶ To estimate the welfare effects of uniform price mandates, I consider prices under counterfactual pricing regimes (in progress)
 - ▶ Fully segmented market benchmark
 - ▶ Digital single market benchmark

Appendix

EU's Digital Single Market

- The EU's Single Digital Market prohibits geoblocking to ensure equal access to digital goods.
- Cross-country price differences for video games remain substantial, despite regulatory efforts.
- Increased competition and access to consumer goods are key goals of the Single Digital Market.

[Back](#)

Key Mechanism: Endogenous Purchase Location Choice

- ▶ Price sensitive customers can **change their digital market** and access cheaper prices
- ▶ Cross-country price gaps reveal information about the underlying demand curves of customers that take each action
- ▶ Similar features show up in Netflix, Spotify, other digital goods

[Back](#)

Free delivery on qualifying orders.
[View our Delivery & Returns Policy](#)

Product Details +

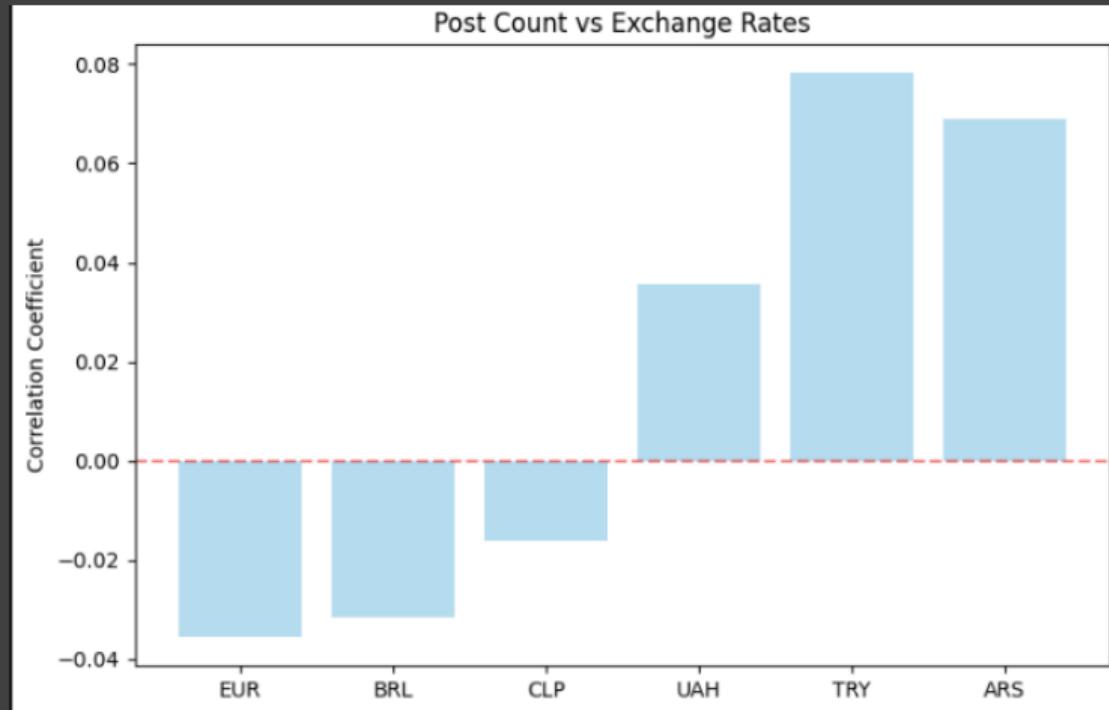
Brand +

Size & Fit +

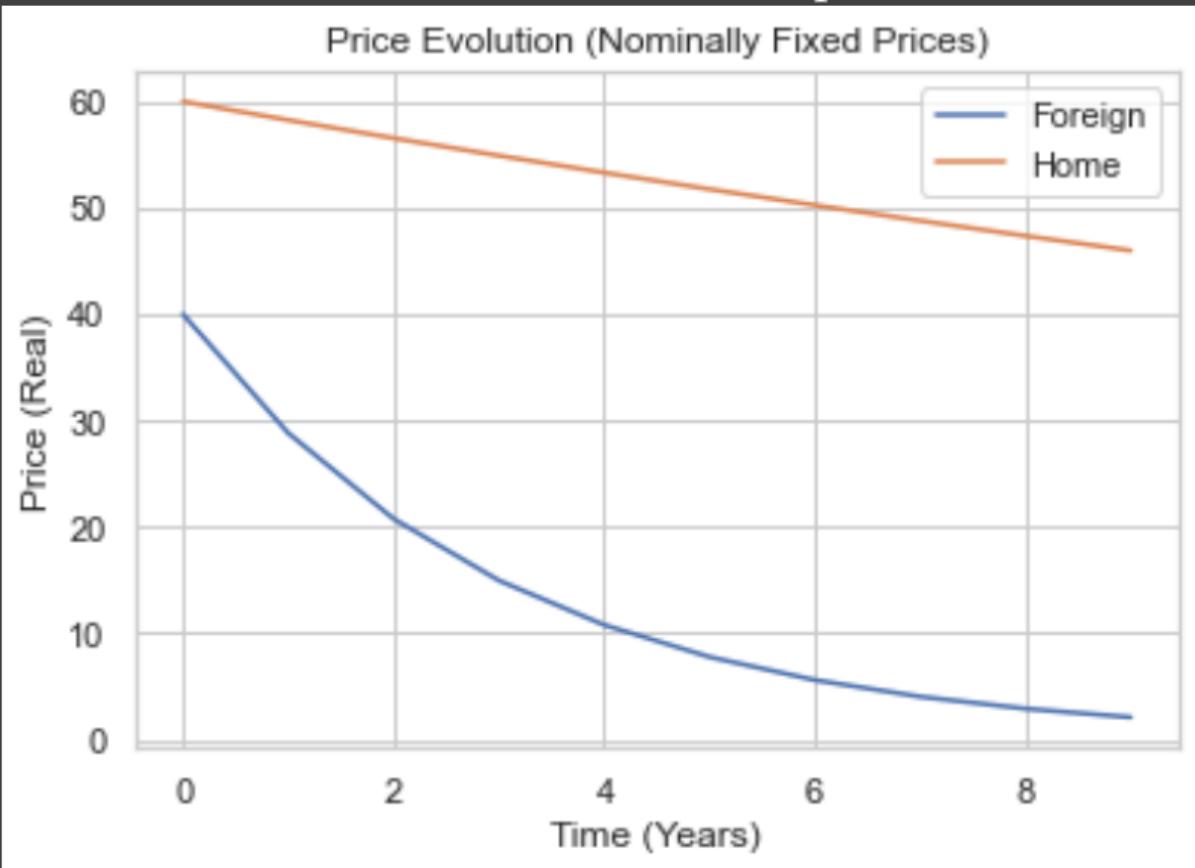
Look After Me +

About Me +

IL	122.2	✓ 450.00 ILS	Open
HK	120.8	✓ HKD\$944.99	Open
SA	116.0	✓ 435.00 SAR	Open
CN	111.9	✓ ¥805.00	Open
AU	111.6	✓ \$170.00	Open
UK	108.2	✓ £85.00	Open
FR	91.9	✓ 81,29 CHF	Open
SE	80.5	✓ 834,00 SEK	Open
EE	66.3	✓ £52.08	Open


(All results converted to USD)

[Rate](#) [F.A.Q.](#) [>SHOP<](#)


Reddit Posts vs Exchange Rates

- Counts of Steam regional tricks Reddit posts increase when the USD appreciates relative to the Ukrainian hryvnia, Turkish lira, and Argentinian peso

[Back](#)

Movements of Relative Prices Example

Back

Timing

- In each time period t :

Exchange rate E_t realized

Timing

- In each time period t :

Exchange rate E_t realized

Firms choose p_F, p_H , and punishment π

Timing

- In each time period t :

Exchange rate E_t realized

Firms choose p_F, p_H , and punishment π

Customer chooses purchase location (given prices & library size)

Customer library evolves via law of motion

Timing

- In each time period t :

Exchange rate E_t realized

Firms choose p_F, p_H , and punishment π

Customer chooses purchase location (given prices & library size)

Customer library evolves via law of motion

Exit with probability s , new entrants drawn from ν

[Back](#)

Recursive Stationary Equilibrium

A recursive stationary equilibrium is a collection of prices, punishment strategy, purchase policies such that

1. $\forall \theta$, $V_\theta(L)$ and $\text{pol}_\theta(L)$ solve the consumer Bellman equation
2. Firm maximizes profits given induced demand curves by selecting p_H, p_F, π
3. $\forall \theta$ μ_θ^* satisfies $\mu_\theta^* = (1 - s)\mu_\theta^* P_\theta + s\nu$
4. $G(\theta, L) = w(\theta)\mu_\theta^*(L)$

[Back](#)

Total Revenue

- The firm chooses prices p_H and p_F to maximize total revenue:

$$\sum_t \beta^t p_H \int_L \int_{\theta} \underbrace{\mathbb{1}\{\text{pol}_{\theta}(L) = H\} dG(\theta, L)}_{\text{Purchase at home}}$$

Home customers that purchase in the home market

Total Revenue

- The firm chooses prices p_H and p_F to maximize total revenue:

$$\sum_t \beta^t p_H \int_L \int_{\theta} \underbrace{\mathbb{1}\{\text{pol}_{\theta}(L) = H\} dG(\theta, L)}_{\text{Purchase at home}}$$

Home customers that purchase in the home market

$$+ \sum_t \beta^t p_F \int_L \int_{\theta: \theta_c = H} \underbrace{\mathbb{1}\{\text{pol}_{\theta}(L) = F\} dG(\theta, L)}_{\text{Home customer, purchase in foreign}}$$

Home customers that buy at foreign prices

Total Revenue

- The firm chooses prices p_H and p_F to maximize total revenue:

$$\sum_t \beta^t p_H \int_L \int_{\theta} \underbrace{\mathbb{1}\{\text{pol}_{\theta}(L) = H\} dG(\theta, L)}_{\text{Purchase at home}}$$

Home customers that purchase in the home market

$$+ \sum_t \beta^t p_F \int_L \int_{\theta: \theta_c = H} \underbrace{\mathbb{1}\{\text{pol}_{\theta}(L) = F\} dG(\theta, L)}_{\text{Home customer, purchase in foreign}}$$

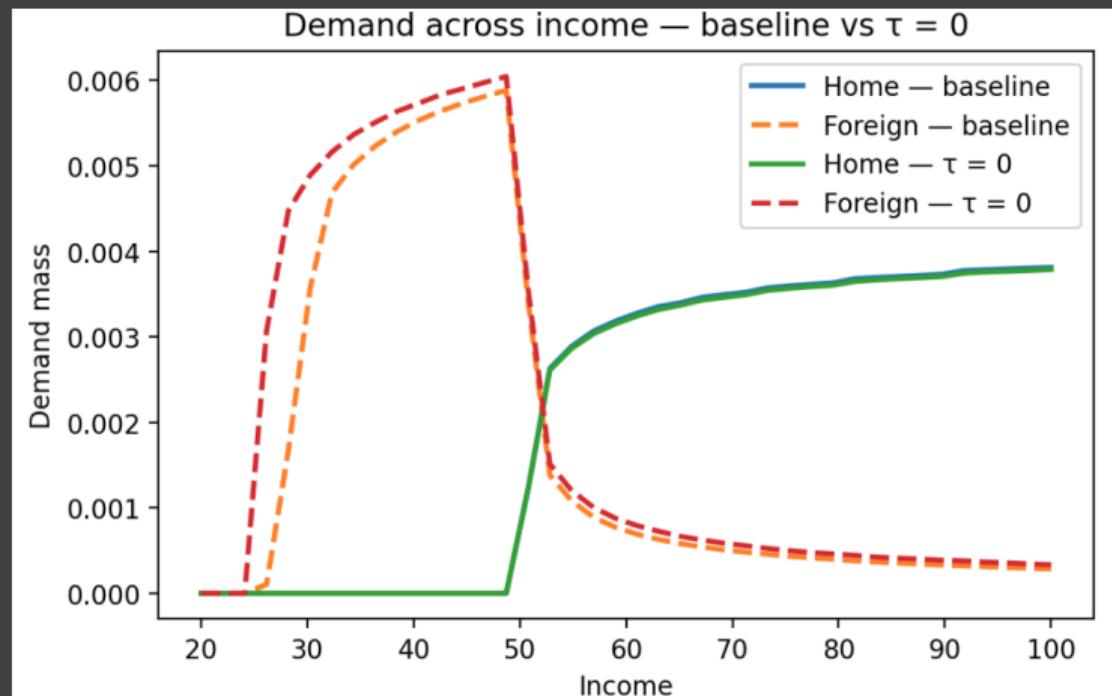
Home customers that buy at foreign prices

$$+ \sum_t \beta^t E_t p_F \int_L \int_{\theta: \theta_c = F} \underbrace{\mathbb{1}\{\text{pol}_{\theta}(L) = F\} dG(\theta, L)}_{\text{Foreign customer purchasing at F price}}$$

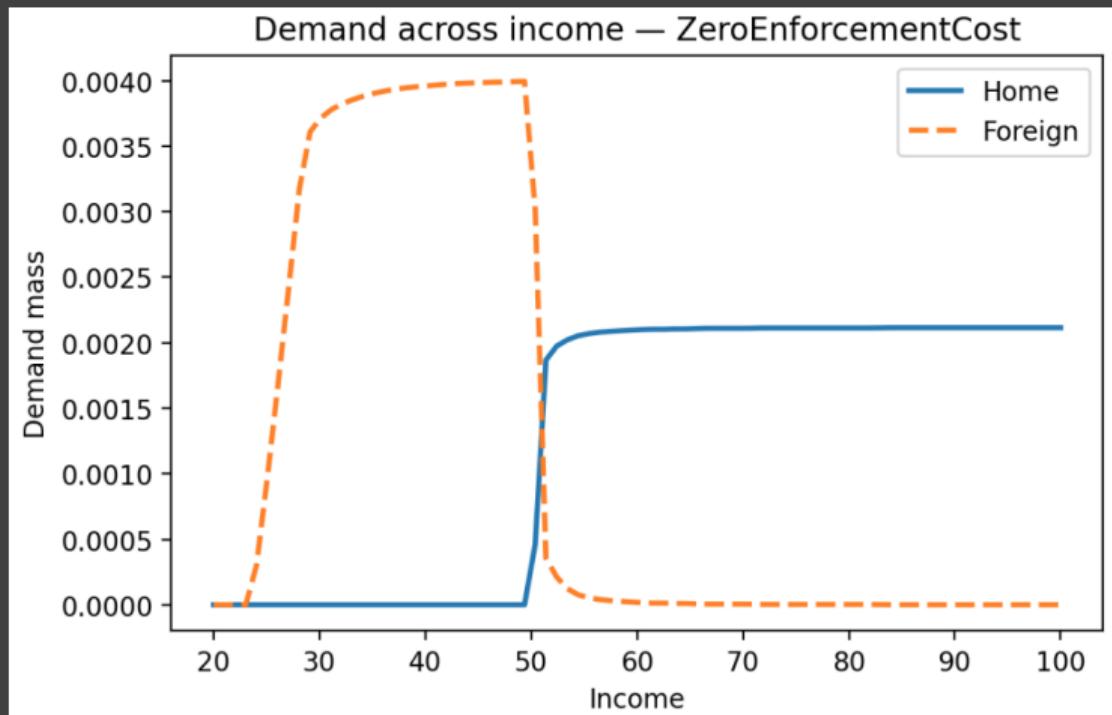
Foreign customers purchasing in foreign

Back

Externally Calibrated Parameters


- ▶ Discount factor $\beta = .98$
- ▶ Exchange rate process
 - ▶ Matched to monthly exchange rate data for Argentina
- ▶ Hazard rate $s = .0037$
 - ▶ Fit to match the hazard rate of playing video games over the lifecycle

[Hazard Estimation](#)


[Back](#)

Counterfactual: Information Shock

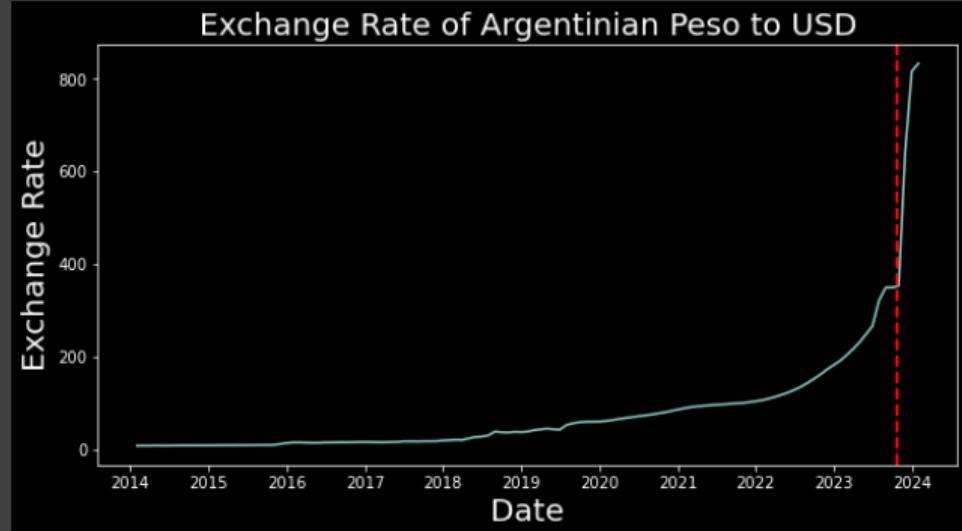
- ▶ Suppose information about accessing foreign markets becomes easier to access
- ▶ The benefits of this accrue to lower income home customers
- ▶ Increased democratization of video games [Back](#)

Zero Enforcement Cost

Back

From Model to Data Moments

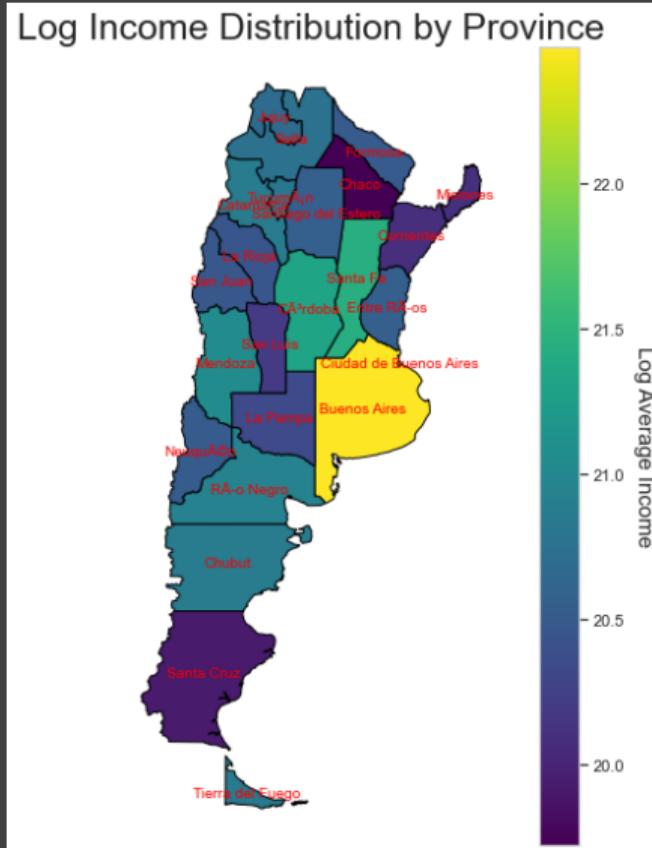
Model Object / Parameter	Informative Data Moments
Switching costs ($\underline{\tau}, \bar{\tau}$)	Lag between exchange rate shocks and changes in foreign share
Income distribution (μ_y, σ_y)	Baseline foreign vs. domestic shares by income group
Taste for library size ($\mu_\alpha, \sigma_\alpha$)	Correlation between library size and foreign purchasing; baseline foreign share levels
Firm enforcement strategy π	Correlation between large exchange rate shocks and frequency of punishment discussions; baseline punishment rate
Punishment cost curvature (k_1, k_2)	Magnitude and frequency of observed punishment actions; false positive rate


[Back to Estimation Strategy](#)

Parameter Estimation via SMM (in progress)

- I am currently estimating customer heterogeneity and firm punishment strategy via SMM:
 - Normal distribution of risk aversion: $\mu_\gamma, \sigma_\gamma$
 - Uniform distribution of fixed switching costs: $\underline{\tau}, \bar{\tau}$
 - Normal distribution of income (can be Pareto as long as shape > 1): μ_y, σ_y
 - Normal distribution of taste for library size: $\mu_\alpha, \sigma_\alpha$
 - Firm strategy: π
 - Convex punishment cost: k_1, k_2
- Data moments that inform identification
 - Response of foreign purchase share (level) to exchange rate shocks
 - Correlation of size of exchange rate shocks and discussions of punishment actions
 - Baseline foreign and domestic shares
 - Baseline frequency of punishment discussion
 - Lag between exchange rate shocks and changes in foreign share (τ_s)
 - False positive rate on punishment [Back](#)

Demand-Side Assumption: Volatility


- ▶ Currency volatility exacerbates the tradeoff between arbitrage and price discrimination
- ▶ Consider Argentina [Back](#)

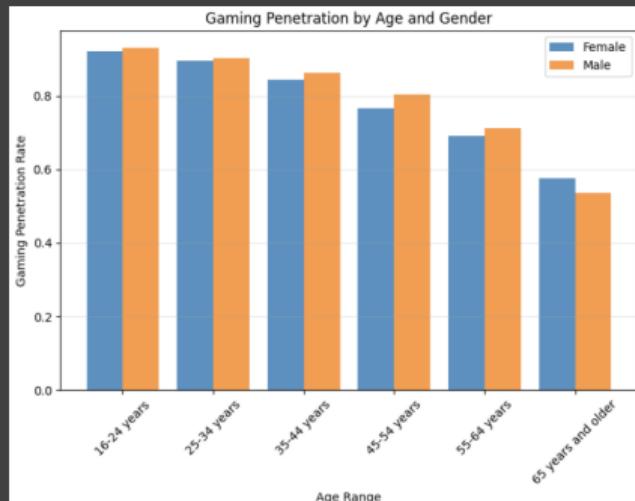
Demand-Side Assumption: Heterogeneity

- Customer heterogeneity creates price discrimination motives
- US customers are heterogeneous
- Argentinian customers also exhibit high heterogeneity

[Back](#)

Dollarization and Steam's Policy Change

- The model predicts that the incentive constraints become more difficult to satisfy when there are exchange rate shocks
- When exchange rate shocks are more frequent than price changes, the firm anticipates possible exchange rate trends
- To reduce arbitrage, the firm can either:
 1. Reduce price gap η Model
 2. Price in the home currency (e.g. dollars)
- Under a stable exchange rate, (2) is rarely optimal Proof
 - Firm cedes currency exchange frictions that customers face


Dollarization and Steam's Policy Change

- The model predicts that the incentive constraints become more difficult to satisfy when there are exchange rate shocks
- When exchange rate shocks are more frequent than price changes, the firm anticipates possible exchange rate trends
- To reduce arbitrage, the firm can either:
 1. Reduce price gap η Model
 2. Price in the home currency (e.g. dollars)
- Under a stable exchange rate, (2) is rarely optimal Proof
 - Firm cedes currency exchange frictions that customers face
- October 25, 2023: Steam announces that all sales in Argentina and Turkey will be in **US Dollars** starting November 20, 2023
- The policy change **reset cross-country price gaps and currency simultaneously**

Back

Estimating the Hazard Parameter

- ▶ Customers in the model have a constant hazard s of exiting the market
- ▶ Since the model has a lifecycle component in terms of the size of the video game library, natural to think of s as the rate of exiting the video game market writ large
- ▶ Fit a constant hazard rate to the cross-sectional fractions of American adults that play video games in different age buckets
- ▶ End up with a hazard rate of .0044 for women and .0037 for men [Back](#)

Demand Estimation Results: Argentina

Table: Estimation Results

	Coefficient	Confidence Interval
constant	-3.597*** (0.258)	[-4.102, -3.092]
AAA	1.316*** (0.261)	[0.804, 1.828]
price	-0.600*** (0.092)	[-0.781, -0.420]

Table: *

Notes: *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$. Standard errors in parentheses.

Developer-level fixed effects are included.

Demand Estimation Results: US

Table: Estimation Results

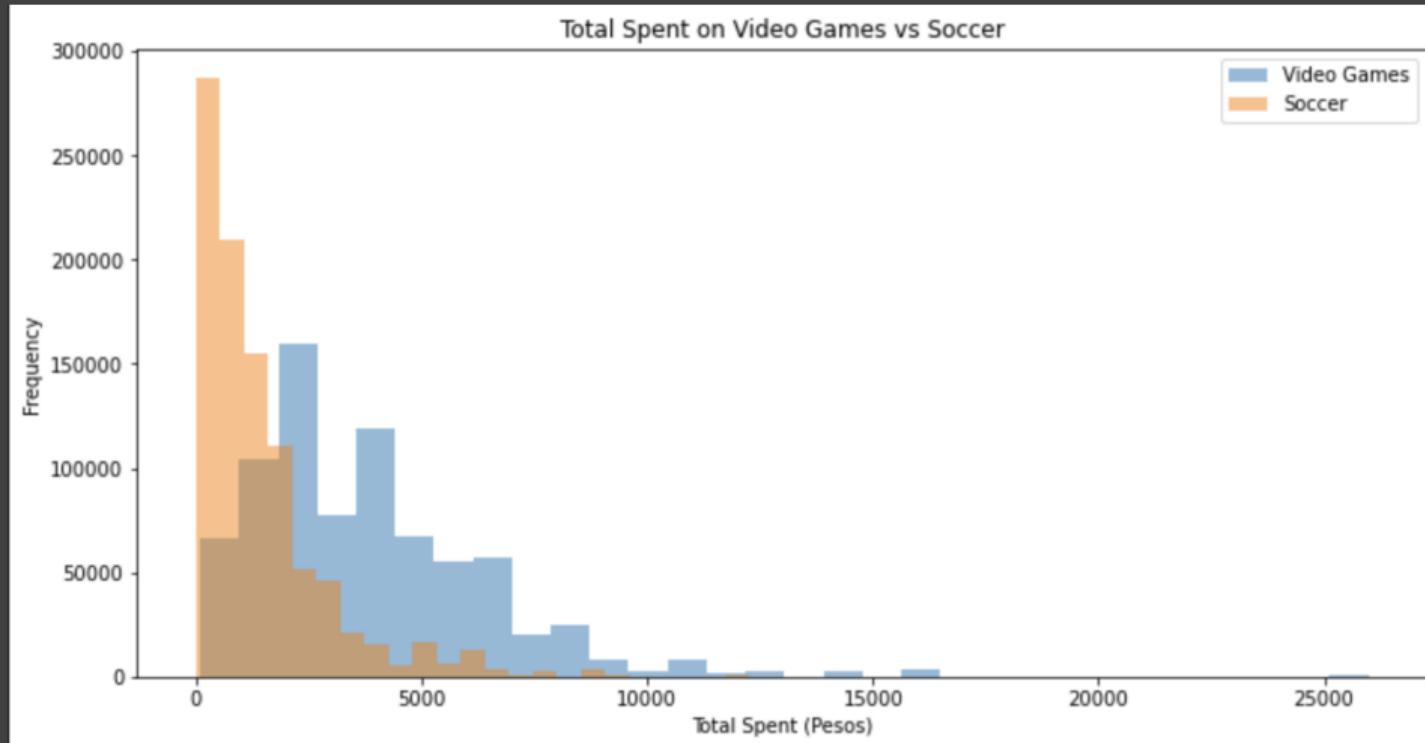
	Coefficient	Confidence Interval
constant	-3.191*** (0.188)	[-3.561, -2.821]
AAA	.636*** (0.114)	[0.412, 0.860]
price	-0.051*** (0.009)	[-0.070, -0.033]

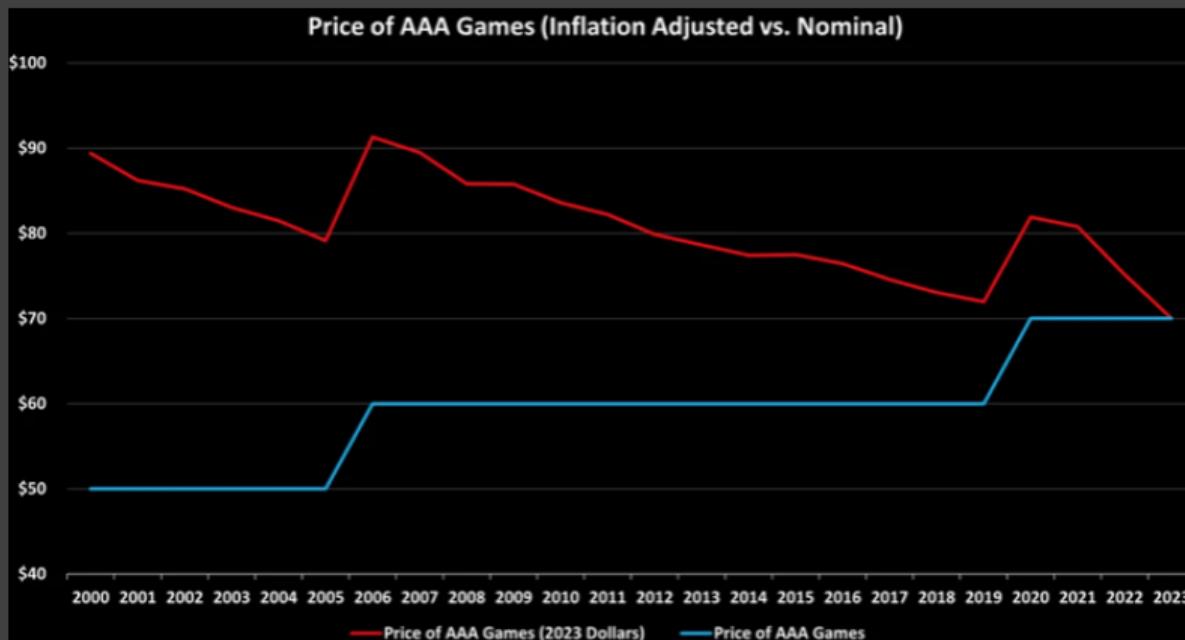
Table: *

Notes: *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$. Standard errors in parentheses.

Developer-level fixed effects are included.

Argentina's Video Game Market




Figure: Argentinians spend more on video games than on soccer

Back

Nominal Price Rigidity

- Nominal prices for AAA games do not move much over time

[Back](#)

Demand Estimation: Argentina

- ▶ Discrete choice in each period between buying a game or selecting the outside option
- ▶ Think of each choice as a game-market pair
- ▶ Estimate a logit demand model with indirect utility:

$$u_{idjt} = \alpha \ln p_{jt} + \beta \text{AAA}_j + \phi_d + \mu_t + \xi_{jt}$$

- ▶ I estimate separately for Argentina and for the US
- ▶ Coefficient on price is -.600 (se: 0.092)
- ▶ Coefficient on AAA is 1.316 (se: 0.261)
- ▶ Full demand estimation results [AR Demand Estimation](#) [Back](#)

Static Model in GE

Model Overview

- ▶ An alternative formulation of the model embeds the Mongey-Waugh pricing inequality framework in space with multiple locations
- ▶ Infinite-horizon economy with households, heterogeneous firms, and a government.
- ▶ Two goods:
 - ▶ Composite good: produced competitively.
 - ▶ Differentiated product: produced by heterogeneous firms (quality ψ_{jt} , productivity z_{jt}).
- ▶ Finite set of markets $m = 1, \dots, M$ with market-specific prices and exchange rates e_{mt} .
- ▶ Households can buy from any market by paying hassle cost τ_{imt} .

Households

Preferences:

$$E \left[\sum_{t=0}^{\infty} \beta^t \sum_{m \in M} \sum_{j \in J} \tilde{u}_{ijmt} \right]$$

where

$$\tilde{u}_{ijmt} = \begin{cases} u(c_{it}) + \psi_j + \xi_{jmt}, & \text{if } j \text{ purchased from } m, \\ 0, & \text{otherwise.} \end{cases}$$

- ▶ Taste shocks ξ_{ijmt} : i.i.d. Type I Extreme Value with parameter θ .
- ▶ Effective price: $\tilde{p}_{ijmt} = \frac{p_{jm}}{e_{mt}} + \tau_{imt}$.
- ▶ Labor: supplied inelastically, evolves via Markov process $P(l, l')$.
- ▶ Budget constraint:

$$c_{ijmt} + \tilde{p}_{ijmt} + a_{i,t+1} \leq R_{t+1} a_{it} + w_t l_{it} + \Pi_t.$$

Firms

- ▶ Produce differentiated product with:

$$y_{jt} = z_{jt} n_{jt}^\alpha$$

- ▶ Profits:

$$\Pi_{jt} = \sum_m p_{jm} y_{jmt} - W_t n_{jt}$$

- ▶ Bertrand competition: choose p_j across all markets to maximize profits.
- ▶ First-order condition in matrix form:

$$x_j = -J^\top (p_j - mc_j)$$

with elasticity matrix E_j and revenue vector R_j .

Markup Equation

From FOCs:

$$\mu_j = - \left(E_j^\top \text{diag}(R_j) \right)^{-1} R_j$$

Element k :

$$\mu_k = \frac{1 + \sum_{m \neq k} \epsilon_{mk} \frac{R_m}{R_k} \mu_m}{-\epsilon_{kk}}$$

- ▶ Positive cross-elasticities $\epsilon_{mk} > 0 \Rightarrow$ diversion raises markups.
- ▶ Firms internalize that higher prices in one market may shift demand to other markets they control.

Government

- ▶ Provides elastic supply of assets.
- ▶ Budget constraint:

$$R_t B_t = B_{t+1}.$$

Household Problem in Bellman Form

Let $M_t = a_t + w_t l_t + \pi_t - \frac{a_{t+1}}{R}$ be effective expenditure.

$$v_{jm}(a, l, \tau) = \max \{u(M_t - \tilde{p}_{jm}) + \psi_j + \beta E[v(\cdot)]\}$$

Choice probability:

$$\rho_{jm}(M_t) = \frac{\exp [\theta(u(M_t - \tilde{p}_{jm}) + \psi_j)]}{\sum_{k \in J} \sum_{n \in M} \exp [\theta(u(M_t - \tilde{p}_{kn}) + \psi_k)]}$$

Aggregation and Equilibrium

- Household law of motion:

$$\Lambda(a', l', \tau') = \int \rho_{jm}(a, l, \tau) \Lambda(a, l, \tau) P(l, l') da dl d\tau$$

- Aggregate demand for firm j in market m :

$$x_{jm} = \int \rho_{jm}(a, l, \tau) \Lambda(a, l, \tau) da dl d\tau$$

- Stationary recursive equilibrium: household optimization, firm optimization, market clearing, stationary Λ , government budget constraint.